With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
To use all functions of this page, please activate cookies in your browser.
New research from the group of Joshua Yuan, professor and chair of energy, environmental and chemical engineering at Washington University in St. Louis' McKelvey School of Engineering, may soon lead to even lighter, stronger carbon fiber -- and stronger plastics -- all using what is currently a waste product.
Research from Washington University in St. Louis may soon lead to lighter, stronger carbon fiber materials and stronger plastics with a gentler environmental impact. The main ingredient necessary for these improvements is lignin, a compound that is essential for most plants but considered a waste product by industry.
The key to opening up lignin’s potential was chemically altering some of its properties. High Molecular Weight Esterified Linkage Lignin (HiMWELL) was designed by the group of Joshua Yuan, professor and chair of the Department of Energy, Environmental & Chemical Engineering at Washington University in St. Louis’ McKelvey School of Engineering.
The research was published Aug. 11 in the journal Matter.
Researchers knew that, combined with polyacrylonitrile (PAN), the newly designed HiMWELL lignin could become a precursor to a better carbon fiber and that it could enable the development of recyclable plastics with better properties, as well.
Already, carbon fiber is known for being a strong and stiff, yet light — and premium — material. It is used as structural reinforcement in everything from tennis rackets to airplanes, and carbon fiber frames reduce weight and improve safety in high-end vehicles. It has been incorporated anywhere possible in some of the fastest super and hypercars.
Yuan’s previous work identified three main roadblocks to incorporating lignin in the equation: neither lignin’s chemical structure nor its molecular weight is uniform, which makes it difficult to combine with other polymers. And it has a high number of OH groups, a reactive pairing of oxygen and hydrogen that attracts water — not ideal for building a rigid material like carbon fiber. These discoveries inspired Yuan and Jinghao Li, a senior scientist at Washington University, to redesign lignin structures.
By developing a technique to chemically alter these properties, Yuan said, “We’ve really created a type of lignin that is very unique.”
When combined with PAN, the HiMWELL-based carbon fiber had a record tensile strength and showed better mechanical properties than standard carbon fiber. When it was added to recyclable polymer blends, HiMWELL improved mechanical properties and also improved UV protection.
“Finally, we have a technological path for lignin to be used for carbon fibers,” Yuan said. And perhaps one day, “You’ll turn this waste into the shell of a car.”
You are currently not logged in to my.chemeurope.com . Your changes will in fact be stored however can be lost at all times.
My notice: Add / edit notice
my watchlist Cancel Save notice
New 2D alloy combines five metals, breaks down CO2
A two-dimensional alloy material -- made from five metals as opposed to the traditional two -- has been developed by a collaboration between researchers at the McKelvey School of Engineering at Washington University in St. Louis and researchers at the College of Engineering at the Universit ... more
Researchers observe new isotope of fluorine
Researchers at Washington University in St. Louis reported the first observations of a new form of fluorine, the isotope 13F, described in the journal Physical Review Letters. They made their discovery as part of an experiment conducted at the National Superconducting Cyclotron Laboratory a ... more
Engineers develop new fuel cells with twice the operating voltage as hydrogen
Electrification of the transportation sector -- one of the largest consumers of energy in the world -- is critical to future energy and environmental resilience. Electrification of this sector will require high-power fuel cells (either stand alone or in conjunction with batteries) to facili ... more
Read what you need to know about our industry portal chemeurope.com.
Find out more about the company LUMITOS and our team.
Find out how LUMITOS supports you with online marketing.
© 1997-2022 LUMITOS AG, All rights reserved